Menu

Calcium metabolism and management


Ionized calcium is the physiologically active form. Ionized calcium acts as an intracellular 2nd messenger; it is involved in skeletal muscle contraction, excitation-contraction coupling in cardiac and smooth muscle, and activation of protein kinases and enzyme phosphorylation. Calcium is also involved in the action of other intracellular messengers, such as cAMP (cyclic adenosine monophosphate) and inositol 1,4,5-triphosphate, and thus mediates the cellular response to numerous hormones, including epinephrine, glucagon, vasopressin (antidiuretic hormone), secretin, and cholecystokinin.

Despite its important intracellular roles, about 99% of body calcium is in bone, mainly as hydroxyapatite crystals. About 1% of bone calcium is freely exchangeable with the extracellular fluid and, therefore, is available for buffering changes in calcium balance.

Normal total serum calcium concentration ranges from 8.8 to 10.4 mg/dL. About 40% of the total blood calcium is bound to plasma proteins, primarily albumin. The remaining 60% includes ionized calcium plus calcium complexed with phosphate and citrate. Total calcium (ie, protein-bound, complexed, and ionized calcium) is usually what is determined by clinical laboratory measurement.

However, ideally, ionized (or free) calcium should be estimated or measured because it is the physiologically active form of calcium in plasma and because its blood level does not always correlate with total serum calcium.

Ionized calcium is generally assumed to be about 50% of the total serum calcium.

Ionized calcium can be estimated, based on total serum calcium and serum albumin levels. Direct determination of ionized calcium, because of its technical difficulty, is usually restricted to patients in whom significant alteration of protein binding of serum calcium is suspected.

Normal ionized serum calcium concentration range varies somewhat between laboratories, but is typically 4.7 to 5.2 mg/dL.

 The regulation of both calcium and phosphate balance is greatly influenced by concentrations of circulating PTH, vitamin D, and, to a lesser extent, calcitonin. Calcium and phosphate concentrations are also linked by their ability to chemically react to form calcium phosphate. The product of concentrations of calcium and phosphate (in mg/dL) is estimated to be < 60 mg2/dL2 (< 4.8 mmol2/L2) normally; when the product exceeds 70 mg2/dL2 (5.6 mmol2/L2), precipitation of calcium phosphate crystals in soft tissue is much more likely. Calcification of vascular tissue accelerates arteriosclerotic vascular disease and may occur when the calcium and phosphate product is even lower (> 55 mg2/dL2 [4.4 mmol2/L2]), especially in patients with chronic kidney disease.

Disclaimer

The contents of this website, such as text, images and other information, are "NOT" a substitute for medical decisions or medical advice. This website is for informational and educational purposes only and not for rendering medical advice. The opinions expressed on this site are our own and do not represent the views of any affiliated organization. Images, text and graphics will be taken from research articles published online and from Google Images/Academic. Although we strive to keep the medical information on our website up to date, we cannot guarantee that the information on our website reflects the latest research. In case of emergency, call 911 immediately. Please consult your doctor for personalized treatment. Always seek the advice of a physician or other qualified healthcare professional with any questions you may have regarding the disease. Never disregard or delay seeking professional medical advice or treatment because of something you have read on this website. This website does not endorse or recommend any specific test, doctor, product, procedure, opinion or other information contained on the website.

Search This Site

Copy Right @DharSaty

'O' My Dear LORD! Lead us, guide us, inspire us, and remind us to believe in possibilities.