Menu

75% happen to older women

A hip fracture is one of the most serious consequences of falls in the elderly, with a mortality of 10% at one month and 30% at one year.

There is also significant morbidity associated with hip fractures, with only 50% returning to their previous level of mobility and 10 to 20% of patients being discharged to a residential or nursing care placement.

Up to 20% of patients with hip fractures will develop a postoperative complication, with chest infections (9%) and heart failure (5%) being the most common.

Developing heart failure following a hip fracture has a very poor prognosis, with a one-year mortality of 92% and a 30-day mortality of 65%.

For chest infections, the one-year mortality is 71% and 43% within 30 days.

The effect of timing of surgical intervention on mortality remains a controversial topic. Various studies have demonstrated an improvement in mortality following early surgical intervention, but other studies did not. However, there is widespread evidence that early operative intervention does improve outcomes, including morbidity (especially infections), pressure sores, pain, and length of stay.

Named after Thomas Willis 1664, who first described the anatomy in his book "Cerebri anatome: cui accessit nervorum descriptio et usus”. Also responsible for numbering of cranial nerves, still used to this day.

The Circle of Willis is an arterial polygon (heptagon) formed as the internal carotid and vertebral systems anastomose around the optic chiasm and infundibulum of the pituitary stalk in the suprasellar cistern. This communicating pathway allows equalization of blood-flow between the two sides of the brain, and permits anastomotic circulation, should a part of the circulation be occluded.

A complete circle of Willis (in which no component is absent or hypoplastic) is only seen in 20-25% of individuals. Posterior circulation anomalies are more common than anterior circulation variants and are seen in nearly 50% of anatomical specimens.



Hemochromatosis is a disorder associated with deposits of excess iron that causes multiple organ dysfunction. Hemochromatosis has been called “bronze diabetes” due to the discoloration of the skin and associated disease of the pancreas. Hereditary hemochromatosis is the most common autosomal recessive disorder in whites. Secondary hemochromatosis occurs because of erythropoiesis disorders and treatment of the diseases with blood transfusions.

A common initial presentation is an asymptomatic patient with mildly elevated liver enzymes who is subsequently found to have elevated serum ferritin and transferrin saturation. Ferritin levels greater than 300 ng per mL for men and 200 ng per mL for women and transferrin saturations greater than 45% are highly suggestive of hereditary hemochromatosis.

Phlebotomy is the mainstay of treatment and can help improve heart function, reduce abnormal skin pigmentation, and lessen the risk of liver complications. Liver transplantation may be considered in select patients. Individuals with hereditary hemochromatosis have an increased risk of hepatocellular carcinoma and colorectal and breast cancers. Genetic testing for the hereditary hemochromatosis genes should be offered after 18 years of age to first-degree relatives of patients with the condition.



Brain natriuretic peptide

BNP is initially synthesized as a 134–amino-acid peptide called pre-pro BNP. The secondary cleaving of a 26–amino-acid signal peptide results in the formation of pro-BNP or BNP 1-108. This molecule is cleaved by furin, an endo-protease, into BNP 32 and N-terminal BNP (NT-BNP 1-76).

Major points to remember regarding BNP and NT-proBNP include:

  1. A major application of both BNP and proBNP testing is the evaluation of patients with congestive heart failure. If heart failure responds to therapy, concentrations of BNP and NT-proBNP should decline, indicating progress of therapy. If a patient does not respond, values may be increased gradually.
  2. In general, NT-proBNP is more stable (up to seven days at room temperature and up to four months if stored at −20°C) than BNP, which is not stable for a day even if the specimen is stored in a refrigerator. Therefore, BNP analysis must be performed as soon as possible after collecting the specimen.
  3. The cut-off level of BNP and NT-proBNP depends on age, as values tend to increase with advancing age. In general, heart failure is unlikely if the BNP value is less than 100 pg/mL and heart failure is very likely if the value is over 500 pg/mL. For NT-proBNP, the normal value for a person 50 years or younger is usually 125 ng/mL, but heart failure is unlikely if the NT-proBNP value is<300 pg/mL. However, heart failure is likely if the value is>450 pg/mL (>900 pg/mL in a patient of age 50 and above).
  4. Patients with end-stage renal disease and dialysis patients usually show higher BNP and NT-proBNP in serum than normal individuals.


 Pseudomonas aeruginosa and antibiotics.


Malnutrition is an imbalance between the nutrients your body needs to function and the nutrients it gets. It is an independent risk factor that negatively influences patients’ clinical outcomes, quality of life, body function, and autonomy. Early identification of patients at risk of malnutrition or who are malnourished is crucial in order to start a timely and adequate nutritional support. Nutrition support refers to enteral or parenteral provision of calories, protein, electrolytes, vitamins, minerals, trace elements, and fluids.

Historically, serum proteins such as albumin and prealbumin (i.e. transthyretin) have been widely used by physicians to determine patients’ nutritional status. Other markers that have been studied include retinol-binding protein (RBP), transferrin, total cholesterol and indicators of inflammation such as C-reactive protein (CRP) and total lymphocyte count (TLC).









Calcific aortic valve stenosis is characterized by a progressive fibro-calcific remodeling and thickening of the aortic valve cusps, which subsequently leads to valve obstruction. The underlying pathophysiology is complex and involves endothelial dysfunction, immune cell infiltration, myofibroblastic and osteoblastic differentiation, and, subsequently, calcification.

Among symptomatic patients with medically treated moderate-to-severe aortic stenosis, mortality from the onset of symptoms is approximately 25% at 1 year and 50% at 2 years. Symptoms of aortic stenosis usually develop gradually after an asymptomatic latent period of 10-20 years.

Systolic hypertension can coexist with aortic stenosis. The carotid arterial pulse typically has a delayed and plateaued peak, decreased amplitude, and gradual downslope (pulsus parvus et tardus).

Other symptoms of aortic stenosis include the following:

  • Pulsus alternans: Can occur in the presence of left ventricular systolic dysfunction
  • Hyperdynamic left ventricle: Unusual; suggests concomitant aortic regurgitation or mitral regurgitation
  • Soft or normal S1
  • Diminished or absent A2: The presence of a normal or accentuated A2 speaks against the existence of severe aortic stenosis
  • Paradoxical splitting of the S2: Resulting from late closure of the aortic valve with delayed A2
  • Accentuated P2: In the presence of secondary pulmonary hypertension
  • Ejection click: Common in children and young adults with congenital aortic stenosis and mobile valve leaflets
  • Prominent S4: Resulting from forceful atrial contraction into a hypertrophied left ventricle
  • Systolic murmur: The classic crescendo-decrescendo systolic murmur of aortic stenosis begins shortly after the first heart sound; the intensity increases toward mid systole and then decreases, with the murmur ending just before the second heart sound.


Furosemide is a loop diuretic. 
  • Inhibits the reabsorption of sodium and chloride from the loop of Henle and distal renal tubule.
  • Increases renal excretion of water, sodium, chloride, magnesium, potassium, and calcium.
  • Effectiveness persists in impaired renal function.
Pharmacokinetics
  • Absorption: 60–67% absorbed after oral administration (↓ in acute HF and in renal failure); also absorbed from IM sites; IV administration results in complete availability; 99.6% absorbed after SUBQ administration.
  • Protein Binding: 91–99%.
  • Metabolism and Excretion: Minimally metabolized by liver, some non-hepatic metabolism, some renal excretion as unchanged drug.
  • Half-life: 30–120 min (↑ in renal impairment).


 Peritonitis is defined as an inflammation of the serosal membrane that lines the abdominal cavity and the organs contained therein. Depending on the underlying pathology, the resultant peritonitis may be infectious or sterile (ie, chemical or mechanical).

Peritoneal infections are classified as primary (ie, from hematogenous dissemination, usually in the setting of an immunocompromised state), secondary (ie, related to a pathologic process in a visceral organ, such as perforation or trauma, including iatrogenic trauma), or tertiary (ie, persistent or recurrent infection after adequate initial therapy). Primary peritonitis is most often spontaneous bacterial peritonitis (SBP) seen mostly in with chronic liver disease. Secondary peritonitis is by far the most common form of peritonitis encountered in clinical practice. Tertiary peritonitis often develops in the absence of the original visceral organ pathology.

Infections of the peritoneum are further divided into generalized (peritonitis) and localized (intra-abdominal abscess).


Hypomagnesemia is common among hospitalized patients and frequently occurs with other electrolyte disorders, including hypokalemia and hypocalcemia. Magnesium depletion usually results from inadequate intake plus impairment of renal conservation or gastrointestinal absorption.

Drugs can cause hypomagnesemia. Examples include chronic (> 1 year) use of a proton pump inhibitor and concomitant use of diuretics. Amphotericin B can cause hypomagnesemia, hypokalemia, and acute kidney injury. The risk of each of these is increased with duration of therapy with amphotericin B and concomitant use of another nephrotoxic agent. Liposomal amphotericin B is less likely to cause either kidney injury or hypomagnesemia.

Trousseau sign is the precipitation of carpal spasm by reduction of the blood supply to the hand with a tourniquet or blood pressure cuff inflated to 20 mm Hg above systolic blood pressure applied to the forearm for 3 minutes.

Chvostek sign is an involuntary twitching of the facial muscles elicited by a light tapping of the facial nerve just anterior to the exterior auditory meatus.

Serum magnesium concentration < 1.8 mg/dL

Hypomagnesemia is diagnosed by measurement of serum magnesium concentration.

Severe hypomagnesemia usually results in concentrations of < 1.25 mg/dL.

Associated hypocalcemia and hypocalciuria are common.

Hypokalemia with increased urinary potassium excretion and metabolic alkalosis may be present.

Treatment with magnesium salts is indicated when magnesium deficiency is symptomatic or the magnesium concentration is persistently < 1.25 mg/dL. Patients with alcohol use disorder are treated empirically. In such patients, deficits approaching 12 to 24 mg/kg are possible.

When serum magnesium is ≤ 1.25 mg/dL but symptoms are less severe, magnesium sulfate may be given IV in 5% D/W at a rate of 1 g/hour as slow infusion for up to 10 hours. In less severe cases of hypomagnesemia, gradual repletion may be achieved by administration of smaller parenteral doses over 3 to 5 days until the serum magnesium concentration is normal. 

 

Procalcitonin (PCT) has developed into a promising new biomarker for early detection of (systemic) bacterial infections. PCT is a 116-amino acid residue that was first explained by Le Moullec et al. in 1984; however, its diagnostic significance was not recognized until 1993. In 1993, Assicot et al. demonstrated a positive correlation between high serum levels of PCT and patients with positive findings for bacterial infection and sepsis (eg, positive blood cultures). PCT assays with a specificity of 79%, is utilized to more accurately determine if a bacterial species is the cause of a patient’s systemic inflammatory reaction.

Procalcitonin serum levels have been shown to increase 6 to 12 hours following initial bacterial infections and increase steadily 2 to 4 hours following the onset of sepsis. The half-life of PCT is between 20 to 24 hours; therefore, when a proper host immune response and antibiotic therapy are in place, PCT levels decrease accordingly by 50% over 24 hours.

PCT serum levels can become elevated among patients during times of noninfectious conditions, such as with trauma, burns, carcinomas (medullary C-cell, small cell lung, & bronchial carcinoid), immunomodulator therapy that increase proinflammatory cytokines, cardiogenic shock, first 2 days of a neonate's life, during peritoneal dialysis treatment, and in cirrhotic patients (Child-Pugh Class C). Furthermore, PCT levels have found to be falsely elevated in patients suffering from various degrees of chronic kidney disease which can, in turn, alter baseline results making the determination of an underlying bacterial infection difficult to establish.



 Thoracolumbar Spine Fracture

The most common mechanisms for thoracolumbar traumatic injuries include motor vehicle accidents, falls from height, recreational injuries, and work-related injuries. Most of them are high-velocity and high-energy injuries, which usually involve additional injuries.

The T10-L2 thoracolumbar region is the most common area of injury to the spine from trauma due to the specific biomechanics of this segment of the spine. Injury to this area can result in a permanent neurological deficit from compression or direct injury to the nerve roots of the cauda equina or the conus medullaris and warrants immediate attention and assessment.

American Spinal Injury Association (ASIA) impairment scale:

A - Complete: No motor or sensory function is preserved below the neurological level

B - Incomplete: Sensory function preserved but no motor function is preserved below the neurological level including the S4–S5 segments

C - Incomplete: Motor function is preserved at the most caudal sacral segments for voluntary anal contraction. The motor function below the neurological level is preserved with less than half of key muscles that have a muscle grade ≥ 3

D - Incomplete: Motor function is preserved below the neurological level with at least half of key muscles that have a muscle grade ≥ 3

E - Normal: Motor and sensory function are normal

Compression fracture. While the front (anterior) of the vertebra breaks and loses height, the back (posterior) part of it does not. This type of fracture is usually stable (the bones have not moved out of place) and is rarely associated with neurologic problems. Compression fractures commonly occur in patients with osteoporosis.

Axial burst fracture.  In this type of fracture, the vertebra loses height on both the front and back sides. It is often caused by landing on the feet after falling from a significant height. An axial burst fracture can sometimes result in nerve compression. Some fractures are stable, while others are significantly unstable (the bones have moved out of place).

Hematology Algorithms 

Anemia is described as a reduction in the proportion of the red blood cells. Most patients experience some symptoms related to anemia when the hemoglobin drops below 7.0 g/dL. RBC are produced in the bone marrow and released into circulation. Approximately 1% of RBC are removed from circulation per day. Imbalance in production to removal or destruction of RBC leads to anemia. 

The etiology of anemia depends on whether the anemia is hypo-proliferative (i.e., corrected reticulocyte count <2%) or hyperproliferative (i.e., corrected reticulocyte count >2%).  Hypo-proliferative anemias are further divided by the mean corpuscular volume into microcytic anemia (MCV<80 fl), normocytic anemia (MCV 80-100 fl) & macrocytic anemia (MCV>100 fl). 

Pancytopenia is a hematologic condition characterized by a decrease in all three peripheral blood cell lines. It is characterized by the hemoglobin of less than 12 g/dL in women and 13 g/dL in men, platelets of less than 150,000 per mcL, and leukocytes of less than 4000 per ml (or absolute neutrophil count of less than 1800 per ml). However, these thresholds largely dependent on age, sex, race as well as varying clinical scenarios. 

Leukopenia is primarily seen as neutropenia since neutrophils constitute the majority of the leukocytes. The etiology of pancytopenia can be broadly categorized as a central type that involves production disorders or a peripheral type that involves disorders of increased destruction. These causes could contribute to the pancytopenia independently or as a combination. 

Red cell distribution width (RDW) = (standard deviation of MCV/mean MCV) × 100. 

Normal range11.5–14.5% has suspicion of thalassemia trait & high often indicates IDA 

Mentzer index = (MCV/RBC count). 

< 13 may represent thalassemia trait & >13 often indicates IDA



 Normal coagulation pathway represents a balance between the pro coagulant pathway that is responsible for clot formation and the mechanisms that inhibit the same beyond the injury site. Imbalance of the coagulation system may occur in the perioperative period or during critical illness, which may be secondary to numerous factors leading to a tendency of either thrombosis or bleeding.

The plasma coagulation system in mammalian blood consists of a cascade of enzyme activation events in which serine proteases activate the proteins (proenzymes and procofactors) in the next step of the cascade via limited proteolysis. The ultimate outcome is the polymerization of fibrin and the activation of platelets, leading to a blood clot. This process is protective, as it prevents excessive blood loss following injury (normal hemostasis). Unfortunately, the blood clotting system can also lead to unwanted blood clots inside blood vessels (pathologic thrombosis), which is a leading cause of disability and death in the developed world. There are two main mechanisms for triggering the blood clotting, termed the tissue factor pathway and the contact pathway. Only one of these pathways (the tissue factor pathway) functions in normal hemostasis. Both pathways, however, contribute to thrombosis. 

The blood coagulation cascade culminates with the conversion of fibrinogen to fibrin, essentially transmitting the proteolytic injury signal into a fibrin clot capable of occluding the inciting tissue defect. Fibrinogen is the most abundant coagulation protein in plasma, consistent with its mechanical rather than signaling role.


 A gut diverticulum (singular) is an outpouching of the wall of the gut to form a sac. Diverticula (plural) may occur at any level from esophagus to colon. A true diverticulum includes all three layers of the gut; the lining mucosa, the muscularis, and the outer serosa. False diverticula are missing the muscularis and are therefore very thin walled. Colonic diverticula are typically false.


 There are 3 types of artificial pacemakers:

  • Implantable pulse generators with endocardial or myocardial electrodes
  • External, miniaturized, patient portable, battery-powered, pulse generators with exteriorized electrodes for temporary transvenous endocardial or transthoracic myocardial pacing
  • Console battery or AC-powered cardioverters or monitors with high-current external transcutaneous or low-current endocardial or myocardial circuits for temporary pacing in asynchronous or demand modes, with manual or triggered initiation of pacing

Following conditions are included in the ACC/AHA/HRS guidelines for the pacemaker insertion

  • Sinus Node Dysfunction

  1. Documented symptomatic sinus bradycardia including frequent sinus pauses which produce symptoms and symptomatic sinus bradycardia that results from required drug therapy for medical condition
  2. Symptomatic chronotropic incompetence (failure to achieve 85% of age-predicted maximal heart rate during formal or informal stress test or inability to mount age appropriate heart rate during activities of daily living)

  • Acquired Atrioventricular (AV) Block

  1. Complete third-degree AV block with or without symptoms.
  2. Symptomatic second degree AV block, Mobitz type I and II
  3. Exercise-induced second or third degree AV block in the absence of myocardial infarction
  4. Mobitz II with widened QRS complex

  • Chronic Bifascicular Block

  1. Advanced second-degree AV block or intermittent third-degree AV block
  2. Alternating bundle-branch block
  3. Type II second-degree AV block.

  • After Acute Phase of Myocardial Infarction

  1. Permanent ventricular pacing for persistent second degree AV block in the His-Purkinje system with alternating bundle branch block or third degree AV block within or below the His-Purkinje system after the ST-segment elevation MI (STEMI)
  2. Permanent ventricular pacing for a transient advanced second or third-degree infranodal AV block and associated bundle branch block
  3. Permanent ventricular pacing for persistent and symptomatic second or third degree AV block

  • Neurocardiogenic Syncope and Hypersensitive Carotid Sinus Syndrome

  1. Recurrent syncope caused by spontaneously occurring carotid sinus stimulation and carotid sinus pressure that induces ventricular asystole of more than 3 seconds

  • Post Cardiac Transplantation

  1. For persistent inappropriate or symptomatic bradycardia not expected to resolve and for other class I indications of permanent pacing.

  • Hypertrophic Cardiomyopathy (HCM)

  1. Patients with HCM having Sinus node dysfunction and AV block

  • Pacing to Prevent Tachycardia

  1. For sustained pause dependent VT, with or without QT prolongation

  • Cardiac Resynchronization Therapy (CRT) in Patients with Severe Systolic Heart Failure

  1. Patients with left ventricular ejection fraction (LVEF) of less than or equal to 35%, sinus rhythm, LBBB (left bundle branch block), New York Heart Association (NYHA) Class II, III or IV symptoms while on optimal medical therapy with a QRS duration of greater than or equal to 150 ms, CRT with or without ICD is indicated

  • Congenital Heart Disease

  1. For advanced second or third-degree AV block associated with symptomatic bradycardia, ventricular dysfunction, or low cardiac output; also for advanced second or third-degree AV block which is not expected to resolve or persists for 7 days or longer after cardiac surgery
  2. For sinus node dysfunction with a correlation of symptoms during age inappropriate bradycardia
  3. Congenital third-degree AV block with a wide QRS escape rhythm, complex ventricular ectopy or ventricular dysfunction
  4. Congenital third-degree AV block in an infant with a ventricular rate of less than or equal to 55 bpm or with congenital heart disease with a ventricular rate of less than or equal to 70 bpm


 Sodium-glucose co-transporter 2 (SGLT2) inhibitors are a new class of glucose-lowering drugs. They work by blocking the low-affinity, high-capacity SGLT2 protein located in the proximal convoluted tubule of the nephron. The SGLT2 protein is responsible for the resorption of approximately 90% of filtered glucose while the remainder is reabsorbed by SGLT1 proteins found on the distal part of the proximal convoluted tubule. SGLT2 inhibition results in glycosuria (and natriuresis as the protein is a co-transporter), thereby lowering plasma glucose concentrations. This mechanism is unique compared with all other glucose-lowering agents as it does not interfere with endogenous insulin or incretin pathways.

In recent cardiovascular outcome trials, SGLT2 inhibitors are associated with 30%–35% lower risk of hospitalization for heart failure. Other glucose-lowering agents appear to be more potent than SGLT2 inhibitors, but fail to reduce cardiovascular risk, particularly with regard to heart failure outcomes. Moreover, although the glucose-lowering efficacy of SGLT2-inhibitor therapy declines at lower estimated glomerular filtration rates, its cardiovascular benefits are remarkably preserved, even in patients with renal impairment. This implies differing mechanisms of action in glycemic control and cardiovascular risk reduction. 


Color coding plays a vital role in the safe and efficient operation of medical devices. By providing clear visual cues for identification, it helps prevent errors, enhances efficiency and promotes patient safety.
  • Enhanced safety: Color coding helps healthcare professionals quickly and accurately identify different components, reducing the risk of errors such as misconnections or incorrect usage. This is particularly critical in high-stress environments such as emergency rooms or operating theaters.
  • Standardization: By adhering to standardized color schemes, manufacturers can ensure consistency across different medical devices and systems. This facilitates easier training for healthcare staff and promotes interoperability between various equipment from different manufacturers.
  • Efficiency: Rapid identification of components through color coding saves valuable time during medical procedures, allowing healthcare providers to focus more on patient care and less on sorting through equipment.
  • Accessibility: For individuals with visual impairments or color blindness, alternative methods such as tactile markings or embossed symbols can complement color coding to ensure inclusivity and accessibility in healthcare settings.
  • Prevention of contamination: Clear differentiation between components reduces the likelihood of cross-contamination, particularly in settings where multiple patients are treated using the same equipment.
  • Regulatory compliance: Adherence to color-coding standards, such as those outlined in ISO 80369, ensures compliance with regulatory requirements and demonstrates a commitment to patient safety and quality standards.


 Hypermagnesemia occurs primarily in patients with acute or chronic kidney disease. In these individuals, some conditions, including proton pump inhibitors, malnourishment, and alcoholism, can increase the risk of hypermagnesemia. Hypothyroidism and especially cortico-adrenal insufficiency, are other recognized causes.

Hyperparathyroidism and alterations in calcium metabolism involving hypercalcemia and/or hypo-calciuria can lead to hypermagnesemia through an increased calcium-induced magnesium absorption in the tubule. Patients with familial hypocalciuric hypercalcemia (FHH), a rare autosomal dominant condition, can manifest hypermagnesemia.

Lithium-based psychotropic drugs can also lead to hypermagnesemia by reducing excretion. Patients with milk-alkali syndrome due to the ingestion of large amounts of calcium and absorbable alkali are more susceptible to develop hypermagnesemia. Magnesium levels can increase in hemolysis patients. Red blood cells contain three times as much magnesium as compared to plasma. The rupture of these cells pours magnesium into the plasma. However, symptomatic hypermagnesemia occurs only in the case of aggressive hemolysis. Tumor lysis syndrome, rhabdomyolysis, and acidosis (e.g., decompensated diabetes with ketoacidosis) can also induce hypermagnesemia through extracellular shifts.

Summary:

  • Mild hypermagnesemia (less than 7 mg/dL) - Asymptomatic or pauci-symptomatic: weakness, nausea, dizziness, and confusion
  • Moderate hypermagnesemia (7 to 12 mg/dL) - Decreased reflexes, worsening of the confusional state and sleepiness, bladder paralysis, flushing, headache, and constipation. A slight reduction in blood pressure, bradycardia, and blurred vision caused by diminished accommodation and convergence are usually present.
  • Severe hypermagnesemia (greater than 12 mg/dL) - Muscle flaccid paralysis, decreased breathing rate, more evident hypotension and bradycardia, prolongation of the P-R interval, atrioventricular block, and lethargy are common. Coma and cardiorespiratory arrest can occur for higher values (over 15 mg/dL).


Ionized calcium is the physiologically active form. Ionized calcium acts as an intracellular 2nd messenger; it is involved in skeletal muscle contraction, excitation-contraction coupling in cardiac and smooth muscle, and activation of protein kinases and enzyme phosphorylation. Calcium is also involved in the action of other intracellular messengers, such as cAMP (cyclic adenosine monophosphate) and inositol 1,4,5-triphosphate, and thus mediates the cellular response to numerous hormones, including epinephrine, glucagon, vasopressin (antidiuretic hormone), secretin, and cholecystokinin.

Despite its important intracellular roles, about 99% of body calcium is in bone, mainly as hydroxyapatite crystals. About 1% of bone calcium is freely exchangeable with the extracellular fluid and, therefore, is available for buffering changes in calcium balance.

Normal total serum calcium concentration ranges from 8.8 to 10.4 mg/dL. About 40% of the total blood calcium is bound to plasma proteins, primarily albumin. The remaining 60% includes ionized calcium plus calcium complexed with phosphate and citrate. Total calcium (ie, protein-bound, complexed, and ionized calcium) is usually what is determined by clinical laboratory measurement.

However, ideally, ionized (or free) calcium should be estimated or measured because it is the physiologically active form of calcium in plasma and because its blood level does not always correlate with total serum calcium.

Ionized calcium is generally assumed to be about 50% of the total serum calcium.

Ionized calcium can be estimated, based on total serum calcium and serum albumin levels. Direct determination of ionized calcium, because of its technical difficulty, is usually restricted to patients in whom significant alteration of protein binding of serum calcium is suspected.

Normal ionized serum calcium concentration range varies somewhat between laboratories, but is typically 4.7 to 5.2 mg/dL.

 The regulation of both calcium and phosphate balance is greatly influenced by concentrations of circulating PTH, vitamin D, and, to a lesser extent, calcitonin. Calcium and phosphate concentrations are also linked by their ability to chemically react to form calcium phosphate. The product of concentrations of calcium and phosphate (in mg/dL) is estimated to be < 60 mg2/dL2 (< 4.8 mmol2/L2) normally; when the product exceeds 70 mg2/dL2 (5.6 mmol2/L2), precipitation of calcium phosphate crystals in soft tissue is much more likely. Calcification of vascular tissue accelerates arteriosclerotic vascular disease and may occur when the calcium and phosphate product is even lower (> 55 mg2/dL2 [4.4 mmol2/L2]), especially in patients with chronic kidney disease.


 Abdominal Aortic Aneurysms

  • Abdominal aortic aneurysms are much more common than thoracic aortic aneurysms.
  • Age is an important risk factor, and the incidence of abdominal aortic aneurysm rises rapidly after the age of 55 years in men and 70 in women.
  • The prevalence of abdominal aortic aneurysms is ≈5% among men ≥65 years of age screened by ultrasound.
  • Smoking is the risk factor most strongly associated with abdominal aortic aneurysms, followed by age, hypertension, hyperlipidemia, and atherosclerosis. Sex and genetics also influence aneurysm formation.
  • Men are 10 times more likely than women to have an abdominal aortic aneurysm of 4 cm or greater.
  • Those with a family history of abdominal aortic aneurysm have an increased risk of 30% and their aneurysms tend to occur at a younger age and carry a greater risk of rupture than do sporadic aneurysms.

 

Thoracic Aortic Aneurysms

  • Thoracic aneurysms may involve one or more aortic segments (aortic root, ascending aorta, arch, or descending aorta) and are classified accordingly.
  • Sixty percent of thoracic aortic aneurysms involve the aortic root and/or ascending aorta, 40% involve the descending aorta, 10% involve the arch, and 10% involve the thoracoabdominal aorta (with some involving >1 segment).
  • The etiology, natural history, and treatment of thoracic aneurysms differ for each of these segments.


 

PULMONARY NODULE

Evaluation is guided by nodule size & assessment of probability of malignancy. In addition is based on the yield of available diagnostic testing, patient comorbidities, & patient preferences. Focal pulmonary lesions that are > 3 cm in diameter are called lung masses & should be considered malignant until proven otherwise.

Pulmonary nodules are categorized as small solid (<8 mm), larger solid (≥8 mm), and subsolid.

Subsolid nodules are divided into ground-glass nodules (no solid component) and part-solid (both ground-glass and solid components).

The probability of malignancy is less than 1% for all nodules smaller than 6 mm and 1% to 2% for nodules 6 mm to 8 mm.

Nodules that are 6 mm to 8 mm can be followed with a repeat chest CT in 6 to 12 months, depending on the presence of patient risk factors and imaging characteristics associated with lung malignancy, clinical judgment about the probability of malignancy, and patient preferences.

The treatment of an individual with a solid pulmonary nodule 8 mm or larger is based on the estimated probability of malignancy; the presence of patient comorbidities, such as chronic obstructive pulmonary disease and coronary artery disease; and patient preferences. Management options include surveillance imaging, defined as monitoring for nodule growth with chest CT imaging, positron emission tomography-CT imaging, nonsurgical biopsy with bronchoscopy or transthoracic needle biopsy, and surgical resection.

Part-solid pulmonary nodules are managed according to the size of the solid component.

Larger solid components are associated with a higher risk of malignancy.

Ground-glass pulmonary nodules have a probability of malignancy of 10% to 50% when they persist beyond 3 months and are larger than 10 mm in diameter.

A malignant nodule that is entirely ground glass in appearance is typically slow growing.

Current bronchoscopy and transthoracic needle biopsy methods yield a sensitivity of 70% to 90% for a diagnosis of lung cancer.


The most common cause of hyperparathyroidism is Parathyroid adenoma. Another cause is hyperplasia of the parathyroid glands.

Parathyroid hormone (PTH) increases serum calcium by

·         Enhancing distal tubular calcium reabsorption

·         Rapidly mobilizing calcium and phosphate from bone (bone resorption)

·         Increasing intestinal absorption of calcium by stimulating conversion of vitamin D to its most active form, calcitriol

Hyperparathyroidism is characterized as:

·         Primary: Excessive secretion of PTH due to a disorder of the parathyroid glands

·         Secondary: Hypocalcemia due to non-parathyroid disorders leads to chronic PTH hypersecretion

·         Tertiary: Autonomous secretion of PTH unrelated to serum calcium concentration in patients with long-standing secondary hyperparathyroidism

Primary hyperparathyroidism: excessive secretion of PTH by one or more parathyroid glands. Incidence increases with age and is higher in postmenopausal women. Primary hyperparathyroidism causes hypercalcemia, hypophosphatemia, and excessive bone resorption (leading to osteoporosis).

Secondary hyperparathyroidism occurs most commonly in advanced chronic kidney disease when decreased formation of active vitamin D in the kidneys and other factors lead to hypocalcemia and chronic stimulation of PTH secretion. Hyperphosphatemia that develops in response to chronic kidney disease also contributes. Other less common causes of secondary hyperparathyroidism include

·         Decreased calcium intake

·         Poor calcium absorption in the intestine due to vitamin D deficiency

·         Excessive renal calcium loss due to loop diuretic use

·         Inhibition of bone resorption due to bisphosphonate use

Tertiary hyperparathyroidism results when PTH secretion becomes autonomous of serum calcium concentration and generally occurs in patients with long-standing secondary hyperparathyroidism, as in patients with ESRD of several years’ duration.

Indications of surgery:

·         Serum calcium 1 mg/dL greater than the upper limits of normal

·         Calciuria > 400 mg/day

·         Creatinine clearance < 60 mL/minute

·         Peak bone density at the hip, lumbar spine, or radius 2.5 SD below controls (T score = −2.5)

·         Age < 50 years

·         The possibility of poor adherence with follow-up

Secondary hyperparathyroidism in patients with renal failure can result in a number of symptoms, including

·         Osteitis fibrosa cystica with arthritis, bone pain, and pathologic fractures

·         Spontaneous tendon rupture

·         Proximal muscle weakness

·         Extra-skeletal calcifications, including soft tissue and vascular calcification

·         Pruritis


Total O2 content is expressed by the following equation:

O2 content (CaO2) = (Hgb x 1.34 x SaO2) + (0.0031 x PaO2)

where Hgb is hemoglobin concentration and SaO2 is hemoglobin saturation at the given PO2. 

The principal form of oxygen transport in blood is as hemoglobin-bound.

Each gram of hemoglobin can maximally bind 1.34 mL of oxygen.

The oxygen-carrying capacity of the blood is calculated as = [Hb] x 1.34.

In a healthy person, with a hemoglobin concentration of 15 g / dL blood, the oxygen carrying capacity is 20.1 mL O2 / dL blood.

 

Oxygen transport is dependent on both respiratory and circulatory function.

Total O2 delivery (DO2) to tissues is the product of arterial O2 content and cardiac output (CO).

DO2 = CaO2 x CO

Note that arterial O2 content is dependent on PaO2 as well as hemoglobin concentration. As a result, deficiencies in O2 delivery may be due to a low PaO2, a low hemoglobin concentration, or an inadequate cardiac output.

 

The Fick equation of O2 consumption

VO2 = CO x (CaO2 – CvO2)


Oxy-hemoglobin Dissociation Curve

With a normal O2 consumption of approximately 250 ml/min and cardiac output of 5000 ml/min the normal arteriovenous difference is calculated to be about 5 ml O2/dl blood. The normal extraction ratio is approximately 25%, thus the body normally consumes only ~25% of the O2 carried on hemoglobin. When O2 demand exceeds supply, the extraction fraction exceeds 25%, and conversely, if O2 supply exceeds demand, the extraction fraction falls below 25%.

When DO2 (oxygen delivery) is moderately reduced, VO2 usually remains normal because of increased O2 extraction (meaning mixed venous O2 saturation decreases). With further reductions in the DO2, a critical point is reached beyond which VO2 becomes directly proportional to DO2. This state of supply-dependent O2 is typically associated with progressive lactic acidosis caused by cellular hypoxia.

Disclaimer

The contents of this website, including text, images, and other information, are not a substitute for medical decisions or professional medical advice. This website is intended for informational and educational purposes only and should not be used for rendering medical guidance. The opinions expressed on this site are solely our own and do not represent the views of any affiliated organization. Images, text, and graphics are sourced from research articles published online and from Google Images/Academic. While we strive to keep the medical information on this website up to date, we cannot guarantee that it reflects the latest research. In case of an emergency, call 911 immediately. For personalized treatment, please consult your doctor. Always seek the advice of a physician or other qualified healthcare professional regarding any questions about a medical condition or treatment. Never disregard or delay seeking professional medical advice because of something you have read on this website. This website does not endorse or recommend any specific tests, doctors, products, procedures, opinions, or other information mentioned herein. By using this website, you acknowledge and agree that it is your responsibility to seek appropriate professional guidance when making medical or health-related decisions. This website and its contributors disclaim any liability arising from the use of the content or images provided herein.

Search This Site

Copy Right @DharSaty

'O' My Dear LORD! Lead us, guide us, inspire us, and remind us to believe in possibilities.